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Abstract— Long-horizon task planning is important for robot
autonomy, especially as a subroutine for frameworks such as
Integrated Task and Motion Planning. However, task planning
is computationally challenging and struggles to scale to realistic
problem settings. We propose to accelerate task planning over an
agent’s lifetime by integrating abstract strategies: a generalizable
planning experience encoding introduced in earlier work. In
this work, we contribute a practical approach to planning with
strategies by introducing a novel formalism of planning in a
strategy-augmented domain. We also introduce and formulate the
notion of a strategy’s affordance, which indicates its predicted
benefit to the solution, and use it to guide the planning and
strategy grounding processes. Together, our observations yield
an affordance-directed, lazy-search planning algorithm, which
can seamlessly compose strategies and actions to solve long-
horizon planning problems. We evaluate our planner in an object
rearrangement domain, where we demonstrate performance
benefits relative to a state-of-the-art task planner.

I. INTRODUCTION

Long-horizon task planning—reasoning about temporally
extended sequences of actions to achieve a symbolically
specified goal—is core to robot autonomy. Many approaches
to embodied planning, such as Integrated Task and Motion
Planning (TAMP), use task planning as a repeatedly called
subroutine [1], which must be fast to execute. However, task
planning is computationally hard [2] and empirically difficult
to scale to large, realistic planning domains, e.g., with many
potentially irrelevant objects and distractions.

We propose to accelerate long-horizon planning by incor-
porating abstract strategies. Such strategies, introduced in
previous work [3–5] (where they were referred to as “abstract
skills”), encode generalizable planning experience for future
reuse. They comprise a state trace (“road map”) in a strategy-
specific abstract state space, coupled with an “abstraction key”
defining a mapping between this abstract state space and the
state space of the planning problem. Each abstraction key
performs a type of transformation on the abstract strategy’s
road map to dynamically adjust it to new domains. Following
a strategy’s road map decomposes a planning problem into
simpler sub-problems to guide the planning process.

In this paper, we extend prior techniques for planning with
strategies [4] into a novel and more practical approach, by
incorporating the estimation of the strategies’ affordances.
These affordances implicitly define a local “basin of attrac-
tion” for each strategy, guiding the planner toward strategies
that best match the problem, and are expected to accelerate
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Fig. 1: Generalization and composition of strategies. (a) An example
problem in which the agent seeks to permute a tower of blocks.
(b) Later, another tower of blocks must be permuted in the same
way, but with irrelevant distracting objects; the prescribed approach
for strategy transfer enables the prior experience from (a) to be
applied to solve this problem faster. (c) An example problem in
which permutation must be applied to two different towers; this
problem can be solved efficiently by composing multiple strategies.

the solution. Affordance-based planning alleviates the need
to find a single strategy that exactly bridges a problem’s
start and goal (a limitation of prior work [4]), allowing us
to effectively compose and long-horizon plan from multiple
strategies and actions. These insights, together with the self-
supervised strategy learning algorithm proposed in earlier
work [5], support life-long, continually-improving planning
agents, capable of automatically building and using a library
of strategies to accelerate planning over a series of problems.

Specifically, we contribute: 1) a formulation of planning
with strategies as “planning in the augmented domain.” This
formulation is supported by 2) a novel conceptualization of
a strategy’s “affordance,” which is the basis for 3) a method
for dynamically yielding the relevant groundings (reconstruc-
tions) of abstract strategies and actions, without enumeration.
This approach underpins 4) a family of algorithms for
affordance-directed planning with strategy libraries, including
an “optimistic” planner, with “lazy” strategy realization.
Finally, we provide 5) a practical proof-of-concept system
(Fig. 1) implementing these algorithms, which, together
with a strategy learning algorithm from previous work [5],
accelerates planning in a lifelong plan-learn loop.

A. Background and Related work
Planning with strategies builds upon the basic formalisms

of states, actions, and planning problems from task plan-
ning (also referred to as “AI/automated planning”) [6, 7].
Task planning (using the Planning Domain Definition Lan-
guage (PDDL) [8]) models planning problems as “domains”
describing a deterministic transition system between states
using actions; such states describe the agent and the scene in
which it acts. Task planning has produced many successful
domain-independent planners, most of which rely either
on heuristic search of a plan graph [9, 10] or encoding



the problem as Boolean satisfiability (SAT) [11, 12]. We
compare against planners from this literature in Sec. VI,
demonstrating that even a simple search-based planning
algorithm incorporating strategies can outperform a highly-
optimized state-of-the-art task planner, thanks to the strategy-
induced problem decomposition. Further, our formulation of
planning with strategies as planning in an strategy-augmented
domain may allow strategies to integrate directly with existing
planners for even greater performance improvement.

High-level actions or macro-actions [13, 14] have also been
used to accelerate planning. These ideas and strategies both
impose a hierarchy on the planning space, but strategies im-
prove flexibility by only prescribing a sequence of states and
not the actions to be used to transition between them. Simi-
larly, task planning based on Hierarchical Task Networks and
Hierarchical Goal Networks (HTNs and HGNs) predefines a
hierarchy of actions (or sub-goals) and iteratively refines it into
sequences of primitive actions [15–17]. In contrast, strategies
do not predefine concrete sub-goals or action sequences and
do not require a strict hierarchy of action types. Abstract
strategies are dynamically grounded, meaning that their sub-
goals depend on the context of their use and that they can be
used interchangeably with primitive actions. In hierarchical
reinforcement learning, high-level actions are often encoded
as policies, referred to as “skills” or “options” [18–21].
Such components simplify search in Markov decision process
problems. Other work has investigated task planner-guided
manipulation strategy learning [22] in the context of TAMP;
these strategies correspond to continuous controllers for
specific instances of primitive actions. Also in TAMP, Vega-
Brown and Roy [23] investigate bounds on the estimated
cost of high-level actions for accelerating planning without
sacrificing optimality. These perspectives on strategies largely
address different problems than we study in this work.

The term “affordance” is overloaded in robotics (partic-
ularly in manipulation) and commonly refers to a model
of an action’s immediate value [24–26]. Work on TAMP
and long-horizon embodied planning has used learned value
functions as affordances to guide action selection [27, 28]
or instantiation [29]. Some work reasons over expected
affordances of actions at future states [30], which temporally
extends the classical notion of affordance in manipulation.
Perhaps most similar to this paper, Awaad et al. [31] use
affordance estimation to improve HTN planning performance.
Our concept of “affordance” generalizes many of these
concepts, as it can be considered a collection of primitive
affordance heuristics. For example, in this work, we combine
predicted estimates of a strategy’s immediate value, its cost of
use (i.e., the cost of solving the sub-problems it imposes), and
the remaining “cost-to-go” to the goal after using the strategy.

II. PRELIMINARIES

Definition 1: A task planning domain D
.
= (S,A, T )

comprises a state space S (continuous or discrete), an action
space A, and a set T ⊆ S×A×S of discrete transitions. An
execution E in is a sequence of alternating states and actions,
i.e., E .

= (S0, a1,S1, a2, . . . ,Sn) . E is feasible in D if

∀i ∈ {1, . . . , n}, (Si−1, ai,Si) ∈ T . In that case, we say
that E is induced by the action sequence (a1, . . . , an).
The trace of states from E is marked S (E).

A task is a collection of constraints on the states and/or
actions of an execution. For conciseness and practicality, this
paper considers tasks with global reach-avoid constraints.

Definition 2: A reach-avoid task T
.
= (Goals, Savoid)

comprises a set Goals of goal regions ⊆ S, and a region
Savoid ⊆ S to avoid. For an execution E, the task constraints
require us to visit all the goal regions (in any order) and
never reach the avoid regions:

∀Sgoal ∈ Goals, ∃S ∈ S (E) , s.t. S ∈ Sgoal, (1)
S (E) ∩ Savoid = ∅. (2)

To solve a task, we seek a plan (i.e., a sequence of actions)
to be applied from the current start state, whose execution is
feasible in the domain and satisfies the task constraints.

A. Abstract Strategies and Abstraction Keys

Definition 3: An abstraction key comprises a tuple, AK .
=(

projectp, reconstp,P
)
, of a state projection function

projectp : S → Ξ, its inverse—a state reconstruction
function reconstp : Ξ → S , and a parameter space P , such
that p ∈ P . The sets of valid parameters for projection of S
and reconstruction of ξ are PS and Pξ, respectively.

Every abstraction key allows to perform a certain type of
transformation on states. Intuitively, projection removes a
property from a state—leading to an abstract state in the AK-
induced abstract state space Ξ—and reconstruction re-sets the
property. The parameter p is used to specify these properties.
In our experiments to follow, we use two previously-defined
abstractions keys: “attention,” and “symbol stripping.”1

With that, we can discuss the concept of abstract strategies.
Definition 4: An abstract strategy K .

= (ARM,AK) com-
prises an Abstract Road Map ARM , and an Abstraction Key
AK. ARM is a trace in the AK-induced abstract state space.

Broadly, an abstract strategy can be learned and cached
upon solution of a task by projecting (a part of) the state
trace of the plan execution S (E) into an abstract domain—
using an abstraction key AK, and a projection parameter p
chosen for that state trace. See [5] for details. Later, this
strategy’s ARM can be reconstructed (grounded) into a new
domain by choosing a new parameter p′ for reconstruction.
The Reconstructed Road Map (RRM) will be used to guide
the planning into “potentially promising” directions.

Definition 5: An abstract strategy K is feasible in do-
main D if exists a reconstruction of its ARM into D, i.e.,

∃p ∈ AK.PARM s.t. RRMp
.
= reconstp (ARM) ⊆ D.S,

(3)
for which exists a sequence of actions that traverses through
the RRMp. In that case we can say that RRMp is feasible.

We refer to the process of matching the abstract strategy to
a problem, reconstructing the abstract strategy’s ARM into
the problem’s domain, and finding a sequence of actions to
follow it in that domain as realization of the abstract strategy.

1For convenience, a formal definition and illustration of these keys is
provided in http://khen.io/icra24appendix.pdf



III. PLANNING WITH STRATEGIES: NOVEL FORMULATION

Our goal is to exploit a library of abstract strategies
Library to accelerate the solution of new planning problems
in our agent’s planning domain D. Prior work indicated that
exactly matching an abstract strategy to a planning problem
can indeed achieve this goal. Yet, finding a single strategy
that is applicable directly from the initial state while also
solves the task completely (as considered there), proved to
be challenging. For more flexibility, we want to extend the
formulation of “planning with abstract strategies” to support
composition of of multiple strategies and primitive actions.

A. Abstract Strategies as Parametric Symbolic Actions

Consider an abstract strategy K ∈ Library that we wish
to realize into D. This strategy can have multiple feasible re-
constructions in D, using different reconstruction parameters;
i.e., this abstract strategy may yield a set of realized strategies.
Further, to reason about the composability of such strategies,
we only need to consider their start and end states, i.e., the
first and last states in each such strategy’s (reconstructed)
road map. In other words, for a realization of K using the
reconstruction parameter p, it is sufficient to reason about
the symbolic transition between RRMp[1] and RRMp[end],
while encapsulating the internal states and actions; this
transition can be labeled with the strategy-action Kp.

Overall, all the feasible realizations of an abstract strat-
egy K in our domain can be represented using a parametric
symbolic strategy-action K. The set of parameters with which
reconstruction is feasible is also the parameter space of K,
and is marked K.P . As commonly agreed, selection and
assignment of a parameter value p for a parametric action
(such as the the one defined here) is referred to as grounding.

B. Planning in the Strategy-Augmented Domain

Definition 6: A domain D′ = (S,A′, T ′) is an aug-
mentation of domain D = (S,A, T ) if T ⊆ T ′

and A ⊆ A′. In that case, we mark D ⊆ D′.
The augmentation is valid if every feasible execution
in D is also a feasible execution in D′. Meaning,
the augmentation does not affect the state connectivity.
In the context of D′, we refer to D as the base domain,
and to actions in A as atomic actions.

The added actions and transitions in the augmented do-
main symbolize multi-action transitions in the base domain.
Following prior art, we use the term action refinement [32]
to name the process of realizing a symbolic action in the
augmented domain into a sequence of atomic actions in the
base domain that will transition between the same start and
end states. Accordingly, refining a plan corresponds to refining
its symbolic actions into a base plan that transitions through
all the states the original plan would.

This leads us to suggest a novel planning scheme: instead
of planning directly in a base domain, try to augment it
and plan in the augmented domain; then, refine the resulting
“high-level plan” into a “base plan,” and return it. If we
perform the augmentation wisely, the transitions added to the
domain can act as “shortcuts” in the search space.

Fig. 2: Search-based planning in the strategy-augmented domain.
Circles represent states, solid arrows represent atomic actions,
and dotted arrows represent strategy actions—symbolic transitions
through the strategy’s Road Map (RM), to be refined into a sequence
of atomic actions. The end state of a strategy action is known prior
to refinement, allowing us to fast-track through the search space.

Combining the previous two definitions, we can consider
augmenting our planning domain D with strategy-actions
derived from Library. Conveniently, strategy-actions not only
serve as shortcuts to accelerate the search in the augmented
domain, but also provide a road map of intermediate states,
to accelerate their own refinement. Such augmentation would
allow us to plan with strategies and actions indistinguishably.

To allow us to discover useful strategies quickly, with
less exploration, we may consider each strategy-action Kp

applicable from multiple states, beyond its inherent start state
Kp.RRM [1]. Since a strategy-action is road-map-based, ap-
plying it from a different state S simply means extending the
encapsulated road map with one additional state, connected via
a “bridge segment.” Accounting for this extension will occur
seamlessly during the strategy-action refinement. In that case,
each strategy-action symbolizes multiple transitions, indicat-
ing its applicability from multiple states. Since RRM is fixed
in space regardless of this S, every strategy-action Kp in the
augmented domain acts as a “funnel,” where ApplicReg(Kp)
marks its “basin of attraction” (see Fig. 2). Finally, we
formulate the strategy-augmented planning problem:

given : a task T , a domain D, a start state Sstart,
and an abstract strategy Library

find : A high-level plan P ′ in D′

A base plan P in D

s.t. : D′ is augmentation of D using Library,
P is a refinement of P ′,

P ′ induces a feasible execution from Sstart in D′,

P induces a feasible execution from Sstart in D,

Applying P from Sstart completes the task.

Our goal is to solve this problem and return a feasible, task-
satisfying plan P as fast as possible. Search-based planning
in the strategy-augmented domain is depicted in Fig. 2.

IV. UNDERSTANDING STRATEGY AFFORDANCES

Affordance is a circumstantial incentive to choose a certain
course of action, which expresses the predicted goodness of
match between the course of action and the agent’s objective,
in the context of the process history, the world the agent
operates in, inherent qualities of this course of action, and



possibly other subjective preferences. In our case, the agent’s
goal is to achieve a task-satisfying plan with minimal effort.
Hence, the affordance measures we consider are based on the
predicted effort required to include a (strategy-)action in our
plan, in order to minimize the need for additional planning.
Unlike reward or cost, which are calculated in retrospect, af-
fordance is determined before action evaluation, predictively.
The importance of affordance is more prominent when con-
sidering actions may have a non-trivial and varying evaluation
effort, as is the case with strategy-actions. Affordance can
also be measured for atomic actions by considering them
“redundant strategies” that need no refinement.

A. Affordance Scores

As we suggest, affordance can be practically modeled
as a numerical vector, where each element represents the
strength of a specific incentive. Also, as implied, these
incentives are circumstantial and conditioned on the context of
application, including the current state, goals, and history. As a
convention, we define the affordance scores to be non-negative
numbers, where zero represents the “best” affordance value.
As mentioned, our goal is to minimize the planning effort. The
affordance models we shall define rely on an agent’s internal
models of distance in the state space, which should express the
predicted effort to plan a transition between states; we mark
these models as effp and effr, for planning in the augmented
domain and planning in the original domain (i.e., refinement),
respectively. Many planning domains have intuitive distance
measures that can be utilized for this cause. For example, in
PDDL-based domains, we may consider the “edit distance”
(number of disagreeing predicates); in geometric domains we
may consider a euclidean metric. More specialized models
can be learned for specific domains. Next, we provide several
exemplary affordance scores for strategy-actions, which aim
to encapsulate the different effects an action selection would
have on planning efficiency.

1) Affordance granted by the current state: This score
measures the proximity of our current state to a state from
which execution of the strategy can start:

startAff(Kp | S) .
= effr (S, Kp.RRM [1]) . (4)

This accounts for the “length” of the bridge segment from
our current state to the first state in the strategy’s road map.

2) Affordance granted inherently by the strategy: This
score measures the effort for planning a path traversing
through the strategy’s road map. Meaning, this score measures
the predicted effort required for refining this strategy:

strategyAff(Kp)
.
=∥∥∥∥∥∥∥

 effr (RRM [1], RRM [2])
...

effr (RRM [end − 1], RRM [end])


∥∥∥∥∥∥∥
l

. (5)

We may choose the l = 1 or the l = ∞ norms.
3) Affordance granted by the task: This score quantifies

how much application of the strategy advances us towards
task completion, considering the history and progress thus

far. For reach-avoid tasks with a single standing goal region
T.Sgoal, as in a classical task, this score would simply measure
the effort to plan a path to this goal (as long as the road map
does not compromise the “avoid” constraints):

taskAff(Kp | T, prefixS) .
={

effp (RRM [end], T.Sgoal) RRM ∩ T.Savoid = ∅
∞ else

, (6)

where prefixS is the planning history that led to the current
state S. If case of multiple goals, we may measure the norm
of efforts to reach from the strategy’s end state to each of
the standing goal regions, those not satisfied by prefixS .

The affordance scores presented (and others) of a strategy-
action Kp can be assembled into an affordance vector,
aff

(
Kp | S, T, prefixS

)
. Note that this vector is defined

for a specific grounding. As previously stated, we can use the
affordance vector to define the applicability region ApplicReg
of Kp, i.e., the set of states from which Kp is applicable, or
its basin of attraction. We do so by choosing an affordance
threshold vector aff:

ApplicReg(Kp | T, prefixS) .
={

S ∈ S | aff
(
Kp | S, T, prefixS

)
≤ aff∧

Kp.RRM [1] is reachable from S
}
. (7)

This idea (visualized in Fig. 4) conveys a significant,
conceptual, and innovative change of view, and means that
applicability of actions is not predefined in the domain, but
dynamically changes throughout the planning process.

V. SOLVING THE PLANNING PROBLEM

Formulating the problem of planning with abstract strate-
gies as planning in an augmented domain allows to solve
it with existing task planners. Indeed, if our base domain
D is PDDL-specified, we can easily encode strategy-actions
as PDDL-compliant, parametric actions with “preconditions”
and “effect,” where the preconditions encode the applicability
region, and the effect encapsulates the road map. This makes
strategy grounding and refinement implicit sub-routines of
precondition evaluation. Nevertheless, this solution approach
ignores the unique properties of the strategy-augmented
planning domain. We hence suggest several practical concepts
to improve solution efficiency. These suggestions can be
summarized into a lazy, affordance-directed search algorithm2,
or integrated into existing planning algorithms individually.

2As provided in http://khen.io/icra24appendix.pdf
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Fig. 3: Illustration of the different affordance scores of a strategy-
action, as measured using its road map, which is fixed in space,
regardless of the start and goal states.



A. Encoding and Dynamic Grounding of Parametric Actions

Preconditions are often not a practical encoding for the
parameter-dependent applicability region.

1) Parameter filtering and dynamic grounding: For PDDL
actions, preconditions are used to specify from which states
it is applicable. During planning, each action’s preconditions
are evaluated from the current state, to find which actions
are applicable from it. When considering parametric actions,
standard planners (e.g., FD [9]) begin the planning process
by performing an a-priori full grounding of each parametric
action (i.e., explicit assignment of all possible parameter
values, by enumerating over the parameter space) to yield
a set of non-parametric grounded actions. However, when
considering complex domains, neither the pre-grounding nor
the explicit precondition evaluation are practical.

Hence, we now suggest an alternative to parametric precon-
ditions: defining a state-dependent parameter space, according
to which we can perform on-demand grounding—to only yield
the grounded actions applicable from that state. Practically,
for each parametric action, this parameter space can be
specified as the solution space of a state-dependent constraint
satisfaction problem, which we call the parameter filter.
Logically, instead of specifying a state-filtering rule for each
parametric action, we specify a parameter-filtering rule for
each state. Since such parameter filtering and grounding is
based on the current state, it should be performed dynamically.
This formulation allows us to efficiently rule out invalid state-
parameter combinations, even without explicit query.

2) Affordance-directed dynamic grounding: Affordance
defines the applicability of each strategy-action; hence, for
such actions, the grounding is affordance-directed. The
parameter filter of a strategy-action can be defined as:

given : an abstract strategy K = (ARM,AK) ∈ Library,
an affordance threshold vector aff,
a start state Sstart, a task T, a domain D,

and a plan prefixSstart ,

find : a strategy-action Kp,

affordance score vector V ,

s.t. : p ∈ K.AK.PARM (i.e., valid reconstruction),
Kp.RRM = reconstp (K.ARM) ,

Kp.RRM ⊆ D.S (i.e., RRM in state space),
Kp.RRM is feasible in D,

Kp.RRM [1] is reachable from Sstart,

V = aff
(
Kp | Sstart, T, prefixSstart

)
,

V [i] ≤ aff[i], ∀i,

For each state S and abstract strategy K, the solution space
of the filter problem contains all the corresponding strategy-
actions whose ApplicReg contains S. To understand overall
which strategy-actions are applicable from S, we should solve
this for every abstract strategy. We refer to this process as
strategy matching. The solution to each matching problem can
most simply be found by feeding the problem to an automated
constraint satisfier (e.g., Z3 [33]). Conveniently, solving
this problem allows to simultaneously (i) understand which

Goal

Kq

Affordance-based

applicability regions

RM4

RM4

Fig. 4: Different strategy-actions (groundings) of an abstract strategy.
Setting a threshold over a strategy-action’s affordance score vector
defines its applicability region. Multiple groundings of the same
abstract strategy can be applicable from the same state. To limit
the branching factor during forward search, we can measure the
(affordance-based) “strength” of attraction to each grounding, find
the optimal one (here, Kq), and eliminate the rest.

groundings of the parametric strategy-action are applicable
from the state; (ii) perform the grounding by calculating
the strategy-action’s RRM and effect; and (iii) calculate the
grounded strategy-action’s affordance, which can be used to
guide the search.

B. Optimistic Planning with Lazy Strategy Refinement

Naively using the aforementioned encoding(s) would re-
quire us to refine each suggested grounding of a parametric
strategy-action (to validate its feasibility) before declaring it is
applicable and continuing the strategy sequencing. Meaning,
in this scheme, which we refer to as “cautious,” planning in
the augmented domain (for strategy sequencing) and planning
in the base domain (for strategy refinement) are interleaved.
Unfortunately, this might cause us to unnecessarily refine
strategy-actions that would not be a part of the final plan.

Instead, we may recall that strategies allow us to know
their “effect” even without explicitly specifying a realizing
action sequence. This property allows us to plan the steps
following a strategy-action, even without refining it. Thus,
instead of interleaved cautious planning, a natural way to solve
the problem is to separate it into planning in two planning
levels: long horizon “high-level” planning in the augmented
domain to create a plan skeleton, followed by multiple “base
level” planning sessions, for filling up the gaps (by refining
the strategies selected in that high level plan). We refer to this
bi-level scheme as “optimistic planning,” as during the high-
level planning, we implicitly assume all selected strategies
are feasible, and perform “lazy” refinement only after finding
a solution. If a refinement failure occurs, instead of triggering
a completely new planning process in the augmented domain,
we can go back to the original planning graph, truncate the
edge of the failed transitions, and resume the planning process.
Regardless of the scheme, each of the refinement problems
may be solved using any user-selected planning algorithm.

C. Using Affordances to Guide the High-Level Plan Search

To grow the planning graph (see Fig. 2), we need to
determine guidelines for node selection and expansion.



1) Node selection: Many prominent planners (e.g., FF
[10]) rely on a “distance to goal” heuristic, to select the
most promising node for expansion. Yet, this would not be
appropriate when planning with strategies. First, our goal is
to minimize the planning effort, and not find an optimal plan;
hence, a “distance to goal” heuristic should be more generally
translated to “effort to completion,” e.g., as measured by the
task affordance (Eq. (6)). Second, as explained, if we consider
the graph of an “optimistic” planner, edges in the prefix of a
node might represent transitions (strategy-action segments)
not yet refined. Hence, when choosing a node for expansion,
we not only want to account for the effort to complete the task
from it, but also the effort to refine its prefix. Conveniently, if
we consider the selected node to represent the end-state Send
of an action Kp applied from Sstart, the effort to refine its
prefix can be calculated incrementally, from the effort to
refine the prefix of Sstart and the segments of Kp. With that,
the node score can easily be expressed as
nodeScore(Send) =∥∥∥∥∥

[
effr

(
prefixSend

)
taskAff(Kp)

]∥∥∥∥∥
l

=

∥∥∥∥∥
[
effr

(
prefixSstart

)
aff (Kp)

]∥∥∥∥∥
l

. (8)

2) Node expansion and optimized grounding: As ex-
plained, we use affordances to define the parameter filter,
determine the applicability, and guide the grounding of
strategy-actions from each state; by such, we can say that
node expansion is also guided by affordance. Now, consider
that multiple groundings of the same abstract strategy K
are applicable from the same state S. Based on the former
conclusions, when node selection is guided by affordance,
we would always prefer the node at the end of the strategy-
action with minimal ∥aff∥l, over the end-node of any other
grounding of K from S. Supported by this claim, we
can choose to perform restricted matching and, instead of
considering all possible groundings, only extend a single edge,
corresponding to the optimal grounding of K. This means
adapting the parameter filter to an “optimized version”:

argmin
∥∥∥aff(Kp | Sstart, T, prefixSstart

)∥∥∥
l
, (9)

under the same conditions provided in the original filter. This
is equivalent to performing greedy edge elimination after each
node expansion. While this choice might cause us to miss
potentially useful strategy-actions, it also helps controlling
the search branching factor. It has no effect on completeness.

VI. EXPERIMENTAL RESULTS

We implemented a system combining the strategy learning
algorithm from [5] with our suggested bi-level strategy-based
planning algorithm. We then evaluated the prominent task
planner Fast Downward (FD) [34], against our planner (which
relied on FD for strategy refinement), on a set of problems in
the blockworld domain from the 2nd International Plan-
ning Competition [35]. These involve permutation of blocks
in towers of sizes up to 8 blocks—a starting configuration
of blocks in a tower must be reconfigured into a different
configuration of the same size. We solved 4 sets of test

TABLE I: Results on tower rearrangement problems, with increas-
ing numbers of towers to be rearranged. Planning with strategies
results in higher success rate and lower median planning time than
Fast Downward [34] as the number of towers increases.

FD Planning with Strategies (FD for refinement)
n Solved Time Solved Time Extract Strategies Actions

(%) (s) (%) (s) (s)
1 100% 0.19 100% 1.33 0.008 1.00 0.88
2 50% 43.74 92% 2.88 0.008 1.46 1.39
3 44% 120.0 54% 31.41 0.006 1.26 2.04
4 20% 120.0 38% 120.0 0.007 1.79 1.53

problems, increasing the number of towers to reconfigure in
each problem from 1 tower to 4 towers. Additionally, the test
problems introduced up to four irrelevant objects that can
appear on the table or on top of starting towers. We began
each set of experiments by building a library of abstract
strategies from solutions of 10 random single-tower training
problems. Example problems are depicted in Fig. 1.

Table I reports the median values for planning times
over 50 randomly generated test problems. Planner timeout
is 120 seconds. The times for planning with strategies
contain the time used for strategy matching and refinement.
Indeed, thanks to the problem decomposition it induces,
planning with strategies allowed us to utilize FD much more
effectively, as our planning resulted in a higher success rate
over all problems. Despite performing slower than FD on
the single tower case, strategies outperforms FD in terms
of median planning time as the number of towers increases,
indicating the increasing difficulty of the problems as well as
the power of strategies to accelerate search. The “Strategies”
and “Actions” columns indicate the median numbers of
strategy-actions and of atomic-actions used in the successful
plans, respectively. As problems grow more difficult, more
strategies and actions are used, demonstrating the ability of
strategy-based planner to generalize and compose to solve
more complex problems. Note that the initial learning phase
was near instantaneous (“Extract” column), taking only
milliseconds to generate strategies from training problems.

VII. CONCLUSION

In this paper we developed a novel theoretical planning
formalism, planning in a strategy-augmented domain, allowing
us to achieve practical acceleration of long-horizon task
planning. This formalism relies on our recently-introduced
framework [3–5] for learning “abstract strategies.” Previous
work conceptually proved that strategies can generalize and
be used to solve new tasks. The approach presented here
extends it, to supports arbitrary composition of strategies and
actions. To allow effective planning with strategies, we also
contributed a novel formulation for the concepts of “affor-
dances” and (affordance-directed) “dynamic grounding,” and
incorporated them into a novel algorithm for planning with
strategies. Finally, we presented an experimental validation of
the approach, showing that it allows an agent to take advantage
of its planning experience and generalize it in real-time to
solve new, harder tasks, which were not solvable using a
state-of-the-art task planner. Overall, this paper is a stepping
stone for extending the “abstract strategies” framework to
support life-long, continually-improving planning agents.
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APPENDIX I
DETAILED PLANNING ALGORITHM

Algorithm 1: Planning in the strategy-augmented
domain: detailed algorithm.

1 Algorithm planWithAbstractStrategies(start state
Sstart, goal region Sgoal, domain D, Library of abstract
strategies, task Planner)

// plan in the augmented domain
2 queue ← [] // node queue

// struct: 1. state, 2. parent node,
3. incoming edge, 4. prefix effort,
5. remaining effort

3 newNode ← [Sstart,Null,Null, 0,∞]
4 queue.insert(newNode,∞) // insert by score
5 while queue.isNotEmpty() do // go over state

nodes
6 curNode ← queue.pop()

// extend atomic-actions
7 forall action a ∈ D.A do
8 if a.precond(curNode.S) =True then
9 Send ← a(curNode.S)

10 preEffort ← curNode.preEffort
11 remEffort ← effp

(
Send,Sgoal

)
12 newNode ←

[Send, curNode, a, preEffort, remEffort]
13 if Send ∈ Sgoal then // reached goal
14 goto 29
15 queue.insert(newNode, preEffort + remEffort)
16 end

// dynamically ground abstract
strategies

17 forall abstract strategy K ∈ Library do
18 strategyAct, startAfford, strategyAfford, taskAfford

← matchOptStrategy(K, D, curNode.Sstart)
19 if strategyAct is not Null then
20 Send ← strategyAct.RRM [end]
21 preEffort ← curNode.preEffort +

startAfford+ strategyAfford
22 remEffort ← taskAfford
23 newNode ←

[Send, curNode, strategyAct, preEffort, remEffort]
24 if Send ∈ Sgoal then // reached goal
25 goto 29
26 queue.insert(newNode, preEffort + remEffort)
27 end
28 end

// potential High-Level Plan found, refine
29 HLP ← trace newNode to root, and return sequence of

actions
30 baseplan ← []
31 FAILURE ←False
32 forall action a ∈ HLP do
33 if a is strategy-action then
34 subplan ←refine(a,Sstart of a,Planner)
35 if subplan is not Null then
36 baseplan ← [baseplan, subplan]
37 else // strategy unfeasible
38 FAILURE ←True; break
39 else if a is atomic-action then
40 baseplan ← [baseplan, a]
41 end
42 if not FAILURE then // refinement done, return
43 return baseplan
44 else // refinement failed
45 truncate sub-graph following failed edge
46 goto 5 // continue high-level planning

Algorithm 2: Strategy refinement: detailed procedure.

1 Procedure refine(strategy-action Kp, start state Sstart,
task Planner)

2 RM ← Kp.RRM
3 if not (RRM [1] = Sstart) then

// augment RM with bridge segment
4 RM ← [Sstart, RM ]
5 subplans ← [ ]
6 for i from 1 to len (RM)− 1 do

// refine RM segment
7 subplans[i] ← Planner.plan(RRM [i], RRM [i+ 1])
8 if subplans[i] = Null then
9 return Null // segment unfeasible,

abort
10 end
11 return [subplans[1], . . . , subplans[l − 1]]

APPENDIX II
ABSTRACTION KEYS

Next, we formulate two abstraction keys to be used in our
experiments. A version of these keys was previously presented
in [3], and is now restated to fit propositional states, as used
in PDDL (and in our experiments).

A. Attention

This abstraction key allows us to focus our attention only
on a subset of the propositions (statements) in a state.

The parameter space of a state S is hence defined as

PS
.
=

{
(subset of the propositions in S)

}
. (10)

The projection and reconstruction functions are defined as:

projectp (S)
.
= remove the set p of props. from S, (11)

reconstp (ξ)
.
= add the set p of props. to S. (12)

This abstraction key can be used to compactly cache a
strategy’s road map as a trace of “smaller” states, containing
only the state variables which are affected by the strategy.
This key is hence useful for learning “local strategies,” from
sequences of actions that only affect a portion of the state.
For example, re-positioning of an object is a often a local
strategy, as it does not affect the positions of the other objects.

B. Symbol stripping

This abstraction key allows us to focus on function over
form, by removing repeating symbols from states in a state
trace. This key can be used, e.g., to learn an object stacking
strategy with no explicit reference to the specific object type.

The parameter space of S is hence defined as

PS
.
= {symbols that appear in S}. (13)

The projection and reconstruction functions are defined as:

projectp (S)
.
= replace each instance of p in S with ∗,

(14)
reconstp (ξ)

.
= replace each instance of ∗ in ξ with ξ.

(15)



C. Combination

We may also consider a “combination” abstraction key,
by composing the respective projection and reconstruction
functions from the two keys presented. This should allow us
to perform both transformations on a state at once.

abcdef

fghijk

lmnopf

abcde?

?ghijk

lmnop?

abcdef

fghijk

abcdeX

Xghijk

lmnopX

abcdef

fghijk

qrstuv

abcdef

fghijk

lmnopf

          "attention"               "symbol stripping"

Projection

Reconstruction

Fig. 5: State transformation using abstraction keys. The top row
shows the original state, the middle row shows the abstract state,
and the bottom row shows the reconstructed and transformed state.
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